

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Activity Browser 0.1.1 documentation

Activity Browser

The Activity Browser is a free LCA [http://en.wikipedia.org/wiki/Life-cycle_assessment] software.
It builds upon brightway2 [http://brightwaylca.org/] for much of its functionality (e.g. LCA calculations). It extends brightway2 through a graphical user interface (GUI) increasing the efficiency of certain tasks.

As it is open source, you can add your own extensions.

Features

Core features currently involve:

	a graphical user interface (GUI) to brightway2

	fast browser-inspired navigation through inventory databases

	creating and modifying inventories and databases

	fast LCA calculations (even multi-inventory-multi-method)

Extensions

Modular LCA approach - a tool for modeling life cycles based on modules.

Documentation

	Installation / Source Code

	Modular LCA approach

Class reference

	Class reference
	Modules (formerly called ‘meta-processes’)

	Linked Modules (formerly called ‘linked Meta-Processes’)

License

The project is licensed under the GNU General Public License.

Contact

Bernhard Steubing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Activity Browser 0.1.1 documentation

Installation / Source Code

The python source code is available at bitbucket [https://bitbucket.org/bsteubing/activity-browser].

 Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Activity Browser 0.1.1 documentation

Modular LCA approach

Using Modules (formerly called ‘Meta-Processes’) to model life cycle inventories enables:

	modeling life cycle stages based on unit processes from an LCI database

	linking modules to represent complete, possibly new life cycles

	efficient modeling of alternative life cycles

	efficient coupling of LCA and optimization

Modules

[image: _images/mp.png]
Modules can group several life cycle inventories into a single process.

Modules need to have:

	a name

	at least one product output with a user defined name

	at least one activity

	a scaling activity (determined autmatically)

Modules can have:

	additional processes forming the process chain

	multiple outputs

	multiple inputs; product inputs involve a cut-off

Data Format of Modules

Modules can be specified in the format shown below. It is used to define and store modules.
All other properties are calculated based on this data, e.g. scaling of edges, LCA results, etc. using the methods of the MetaProcess class.

example_module = {
 'name': 'user defined module name',
 'outputs': [
 (key, 'user defined product name', user defined amount),
],
 'chain': [
 (key),
],
 'cuts': [
 (parent_key, child_key, 'user defined input product name', amount),
],
 'output_based_scaling': True,
}

Notes:

	Keys:

	
	Keys are a tuple composed of two elements, where the first refers to the database and the second to the activity, thus (‘database name’, ‘module name or uuid’)

	Output-based scaling:

	
	The default value is True. If set to False, the scaling activities will be scaled to 1.0 no matter how the product outputs are defined by the user. This can be used to

	to create artificial outputs that are not part of the original dataset (the user needs to see whether that makes sense)

	when ecoinvent 2.2 multi-output activities, as imported in brightway2, are used, as these don’t include the output products, which need to be manually defined.

Linked Modules

[image: _images/lmp.png]
Linked Module Systems are created by combining modules based on their product inputs and outputs. As shown in the example, the product based linking allows to efficiently specify alternative supply chains.

A detailed description of the math behind modules, its application scope and examples are provided in the following paper (reference will be available soon).

 Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Activity Browser 0.1.1 documentation

Class reference

Modules (formerly called ‘meta-processes’)

	
class metaprocess.MetaProcess(name, outputs, chain, cuts, output_based_scaling=True, **kwargs)

	
	A description of one or several processes from a life cycle inventory database.

	It has the following characteristics:

	It produces one or several output products

	It has at least one process from an inventory database

	It has one or several scaling activities that are linked to the output of the system. They are calculated automatically based on the product output (exception: if output_based_scaling=False, see below).

	Inputs may be cut-off. Cut-offs are remembered and can be used in a linked meta-process to recombine meta-processes to form supply chains (or several, alternative supply chains).

	Args:

	
	name (str): Name of the meta-process

	outputs ([(key, str, optional float)]): A list of products produced by the meta-process. Format is (key into inventory database, product name, optional amount of product produced).

	chain ([key]): A list of inventory processes in the supply chain (not necessarily in order).

	cuts ([(parent_key, child_key, str, float)]): A set of linkages in the supply chain that should be cut. These will appear as negative products (i.e. inputs) in the process-product table. The float amount is determined automatically. Format is (input key, output key, product name, amount).

	output_based_scaling (bool): True: scaling activities are scaled by the user defined product outputs. False: the scaling activities are set to 1.0 and the user can define any output. This may not reflect reality or original purpose of the inventory processes.

	
construct_graph(db)

	Construct a list of edges.

	Args:

	
	db (dict): The supply chain database

	Returns:

	A list of (in, out, amount) edges.

	
getFilteredDatabase(depending_databases, chain)

	Extract the supply chain for this process from larger database.

	Args:

	
	nodes (set): The datasets to extract (keys in db dict)

	db (dict): The inventory database, e.g. ecoinvent

	Returns:

	A filtered database, in the same dict format

	
getScalingActivities(chain, edges)

	Which are the scaling activities (at least one)?

Calculate by filtering for processes which are not used as inputs.

	Args:

	
	chain (set): The supply chain processes

	edges (list): The list of supply chain edges

	Returns:

	Boolean isSimple, List heads.

	
get_edge_lists()

	Get lists of external and internal edges with original flow values or scaled to the meta-process.

	
get_product_inputs_and_outputs()

	Returns a list of product inputs and outputs.

	
get_supply_vector(chain, edges, scaling_activities, outputs)

	Construct supply vector (solve linear system) for the supply chain of this simplified product system.

	Args:

	
	chain (list): Nodes in supply chain

	edges (list): List of edges

	scaling_activities (key): Scaling activities

	Returns:

	Mapping from process keys to supply vector indices
Supply vector (as list)

	
lca(method, amount=1.0, factorize=False)

	Calculates LCA results for a given LCIA method and amount. Returns the LCA score.

	
mp_data

	Returns a dictionary of meta-process data as specified in the data format.

	
pad_cuts()

	Makes sure that each cut includes the amount that is cut. This is retrieved from self.internal_scaled_edges_with_cuts.

	
pad_outputs(outputs)

	If not given, adds default values to outputs:

	output name: “Unspecified Output”

	amount: 1.0

	Args:

	
	outputs (list): outputs

	Returns:

	Padded outputs

	
pp

	Property shortcut for returning a list of product intputs and outputs.

	
remove_cuts_from_chain(chain, cuts)

	Remove chain items if they are the parent of a cut. Otherwise this leads to unintended LCIA results.

	
save_as_bw2_dataset(db_name='MP default', unit=None, location=None, categories=[], save_aggregated_inventory=False)

	Save simplified process to a database.

Creates database if necessary; otherwise adds to existing database. Uses the unit and location of self.scaling_activities[0], if not otherwise provided. Assumes that one unit of the scaling activity is being produced.

	Args:

	
	db_name (str): Name of Database

	unit (str, optional): Unit of the simplified process

	location (str, optional): Location of the simplified process

	categories (list, optional): Category/ies of the scaling activity

	save_aggregated_inventory (bool, optional): Saves in output minus input style by default (True), otherwise aggregated inventory of all inventories linked within the meta-process

Linked Modules (formerly called ‘linked Meta-Processes’)

	
class linkedmetaprocess.LinkedMetaProcessSystem(mp_list=None)

	A linked meta-process system holds several interlinked meta-processes. It has methods for:

	loading / saving linked meta-process systems

	returning information, e.g. product and process names, the product-process matrix

	determining all alternatives to produce a given functional unit

	calculating LCA results for individual meta-processes

	calculating LCA results for a demand from the linked meta-process system (possibly for all alternatives)

Meta-processes cannot contain:

	2 processes with the same name

	identical names for products and processes (recommendation is to capitalize process names)

Args:

	mp_list ([MetaProcess]): A list of meta-processes

	
add_mp(mp_list, rename=False)

	Adds meta-processes to the linked meta-process system.

mp_list can contain meta-process objects or the original data format used to initialize meta-processes.

	
all_pathways(functional_unit)

	Returns all alternative pathways to produce a given functional unit. Data output is a list of lists.
Each sublist contains one path made up of products and processes.
The input Graph may not contain cycles. It may contain multi-output processes.

Args:

	functional_unit: output product

	
edges(mp_list=None)

	Returns an edge list for all edges within the linked meta-process system.

mp_list can be a list of meta-process objects or meta-process names.

	
get_cut_names(mp_list=None)

	Returns cut/input product names for a list of meta-processes.

	
get_output_names(mp_list=None)

	Returns output product names for a list of meta-processes.

	
get_pp_matrix(mp_list=None)

	Returns the product-process matrix as well as two dictionaries
that hold row/col values for each product/process.

mp_list can be used to limit the scope to the contained processes

	
get_process_names(mp_list=None)

	Returns a the names of a list of meta-processes.

	
get_processes(mp_list=None)

	Returns a list of meta-processes.

mp_list can be a list of meta-process objects or meta-process names.

	
get_product_names(mp_list=None)

	Returns the output and input product names of a list of meta-processes.

mp_list can be a list of meta-process objects or meta-process names.

	
lca_alternatives(method, demand)

	Calculation of LCA results for all alternatives in a linked meta-process system that yield a certain demand.
Results are stored in a list of dictionaries as described in ‘lca_linked_processes’.

Args:

	method: LCIA method

	demand (dict): keys: product names, values: amount

	
lca_linked_processes(method, process_names, demand)

	Performs LCA for a given demand from a linked meta-process system.
Works only for square matrices (see scaling_vector_foreground_demand).

Returns a dictionary with the following keys:

	path: involved process names

	demand: product demand

	scaling vector: result of the demand

	LCIA method: method used

	process contribution: contribution of each process

	relative process contribution: relative contribution

	LCIA score: LCA result

Args:

	method: LCIA method

	process_names: selection of processes from the linked meta-process system (that yields a square matrix)

	demand (dict): keys: product names, values: amount

	
lca_processes(method, process_names=None, factorize=False)

	Returns a dictionary where keys = meta-process name, value = LCA score

	
load_from_file(filepath, append=False)

	Loads a meta-process database, makes a MetaProcess object from each meta-process and
adds them to the linked meta-process system.

Args:

	filepath: file path

	append: adds loaded meta-processes to the existing database if True

	
processes

	Returns all process names.

	
product_process_dict(mp_list=None, process_names=None, product_names=None)

	Returns a dictionary that maps meta-processes to produced products (key: product, value: meta-process).
Optional arguments mp_list, process_names, product_names can used as filters.

	
products

	Returns all product names.

	
remove_mp(mp_list)

	Remove meta-processes from the linked meta-process system.

mp_list can be a list of meta-process objects or meta-process names.

	
save_to_file(filepath)

	Saves data for each meta-process in the meta-process data format using pickle and updates the linked meta process system.

	
scaling_vector_foreground_demand(mp_list, demand)

	Returns a scaling dictionary for a given demand and matrix defined by a list of processes (or names).
Keys: process names. Values: scaling vector values.

Args:

	mp_list: meta-process objects or names

	demand (dict): keys: product names, values: amount

	
update(mp_list)

	Updates the linked meta-process system every time processes
are added, modified, or deleted.
Errors are thrown in case of:

	identical names for products and processes

	identical names of different meta-processes

	if the input is not of type MetaProcess()

	
update_name_map()

	Updates the name map, which maps product names (outputs or cuts) to activity keys.
This is used in the Activity Browser to automatically assign a product name to already known activity keys.

	
upstream_products_processes(product)

	Returns all upstream products and processes related to a certain product (functional unit).

 Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Activity Browser 0.1.1 documentation

 Python Module Index

 l |
 m

 			

 		
 l	

 	
 	
 linkedmetaprocess	

 			

 		
 m	

 	
 	
 metaprocess	

 Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Activity Browser 0.1.1 documentation

Index

 A
 | C
 | E
 | G
 | L
 | M
 | P
 | R
 | S
 | U

A

 	

 	add_mp() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	

 	all_pathways() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

C

 	

 	construct_graph() (metaprocess.MetaProcess method), [1], [2]

E

 	

 	edges() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

G

 	

 	get_cut_names() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	get_edge_lists() (metaprocess.MetaProcess method), [1], [2]

 	get_output_names() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	get_pp_matrix() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	get_process_names() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	get_processes() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	

 	get_product_inputs_and_outputs() (metaprocess.MetaProcess method), [1], [2]

 	get_product_names() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	get_supply_vector() (metaprocess.MetaProcess method), [1], [2]

 	getFilteredDatabase() (metaprocess.MetaProcess method), [1], [2]

 	getScalingActivities() (metaprocess.MetaProcess method), [1], [2]

L

 	

 	lca() (metaprocess.MetaProcess method), [1], [2]

 	lca_alternatives() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	lca_linked_processes() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	lca_processes() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	

 	linkedmetaprocess (module), [1], [2]

 	LinkedMetaProcessSystem (class in linkedmetaprocess), [1], [2]

 	load_from_file() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

M

 	

 	MetaProcess (class in metaprocess), [1], [2]

 	metaprocess (module), [1], [2]

 	

 	mp_data (metaprocess.MetaProcess attribute), [1], [2]

P

 	

 	pad_cuts() (metaprocess.MetaProcess method), [1], [2]

 	pad_outputs() (metaprocess.MetaProcess method), [1], [2]

 	pp (metaprocess.MetaProcess attribute), [1], [2]

 	

 	processes (linkedmetaprocess.LinkedMetaProcessSystem attribute), [1], [2]

 	product_process_dict() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	products (linkedmetaprocess.LinkedMetaProcessSystem attribute), [1], [2]

R

 	

 	remove_cuts_from_chain() (metaprocess.MetaProcess method), [1], [2]

 	

 	remove_mp() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

S

 	

 	save_as_bw2_dataset() (metaprocess.MetaProcess method), [1], [2]

 	save_to_file() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	

 	scaling_vector_foreground_demand() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

U

 	

 	update() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	update_name_map() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 	

 	upstream_products_processes() (linkedmetaprocess.LinkedMetaProcessSystem method), [1], [2]

 Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/minus.png

metaprocess_class_reference.html

 Navigation

 		
 index

 		
 modules |

 		Activity Browser 0.1.1 documentation »

Meta-Process class reference

Meta-Process

		
class metaprocess.MetaProcess(name, outputs, chain, cuts, output_based_scaling=True, **kwargs)

		
		A description of one or several processes from a life cycle inventory database.

		It has the following characteristics:

		It produces one or several output products

		It has at least one process from an inventory database

		It has one or several scaling activities that are linked to the output of the system. They are calculated automatically based on the product output (exception: if output_based_scaling=False, see below).

		Inputs may be cut-off. Cut-offs are remembered and can be used in a linked meta-process to recombine meta-processes to form supply chains (or several, alternative supply chains).

		Args:

		
		name (str): Name of the meta-process

		outputs ([(key, str, optional float)]): A list of products produced by the meta-process. Format is (key into inventory database, product name, optional amount of product produced).

		chain ([key]): A list of inventory processes in the supply chain (not necessarily in order).

		cuts ([(parent_key, child_key, str, float)]): A set of linkages in the supply chain that should be cut. These will appear as negative products (i.e. inputs) in the process-product table. The float amount is determined automatically. Format is (input key, output key, product name, amount).

		output_based_scaling (bool): True: scaling activities are scaled by the user defined product outputs. False: the scaling activities are set to 1.0 and the user can define any output. This may not reflect reality or original purpose of the inventory processes.

		
construct_graph(db)

		Construct a list of edges.

		Args:

		
		db (dict): The supply chain database

		Returns:

		A list of (in, out, amount) edges.

		
getFilteredDatabase(depending_databases, chain)

		Extract the supply chain for this process from larger database.

		Args:

		
		nodes (set): The datasets to extract (keys in db dict)

		db (dict): The inventory database, e.g. ecoinvent

		Returns:

		A filtered database, in the same dict format

		
getScalingActivities(chain, edges)

		Which are the scaling activities (at least one)?

Calculate by filtering for processes which are not used as inputs.

		Args:

		
		chain (set): The supply chain processes

		edges (list): The list of supply chain edges

		Returns:

		Boolean isSimple, List heads.

		
get_edge_lists()

		Get lists of external and internal edges with original flow values or scaled to the meta-process.

		
get_product_inputs_and_outputs()

		Returns a list of product inputs and outputs.

		
get_supply_vector(chain, edges, scaling_activities, outputs)

		Construct supply vector (solve linear system) for the supply chain of this simplified product system.

		Args:

		
		chain (list): Nodes in supply chain

		edges (list): List of edges

		scaling_activities (key): Scaling activities

		Returns:

		Mapping from process keys to supply vector indices
Supply vector (as list)

		
lca(method, amount=1.0, factorize=False)

		Calculates LCA results for a given LCIA method and amount. Returns the LCA score.

		
mp_data

		Returns a dictionary of meta-process data as specified in the data format.

		
pad_cuts()

		Makes sure that each cut includes the amount that is cut. This is retrieved from self.internal_scaled_edges_with_cuts.

		
pad_outputs(outputs)

		If not given, adds default values to outputs:

		output name: “Unspecified Output”

		amount: 1.0

		Args:

		
		outputs (list): outputs

		Returns:

		Padded outputs

		
pp

		Property shortcut for returning a list of product intputs and outputs.

		
remove_cuts_from_chain(chain, cuts)

		Remove chain items if they are the parent of a cut. Otherwise this leads to unintended LCIA results.

		
save_as_bw2_dataset(db_name='MP default', unit=None, location=None, categories=[], save_aggregated_inventory=False)

		Save simplified process to a database.

Creates database if necessary; otherwise adds to existing database. Uses the unit and location of self.scaling_activities[0], if not otherwise provided. Assumes that one unit of the scaling activity is being produced.

		Args:

		
		db_name (str): Name of Database

		unit (str, optional): Unit of the simplified process

		location (str, optional): Location of the simplified process

		categories (list, optional): Category/ies of the scaling activity

		save_aggregated_inventory (bool, optional): Saves in output minus input style by default (True), otherwise aggregated inventory of all inventories linked within the meta-process

Linked Meta-Process

		
class linkedmetaprocess.LinkedMetaProcessSystem(mp_list=None)

		A linked meta-process system holds several interlinked meta-processes. It has methods for:

		loading / saving linked meta-process systems

		returning information, e.g. product and process names, the product-process matrix

		determining all alternatives to produce a given functional unit

		calculating LCA results for individual meta-processes

		calculating LCA results for a demand from the linked meta-process system (possibly for all alternatives)

Meta-processes cannot contain:

		2 processes with the same name

		identical names for products and processes (recommendation is to capitalize process names)

Args:

		mp_list ([MetaProcess]): A list of meta-processes

		
add_mp(mp_list, rename=False)

		Adds meta-processes to the linked meta-process system.

mp_list can contain meta-process objects or the original data format used to initialize meta-processes.

		
all_pathways(functional_unit)

		Returns all alternative pathways to produce a given functional unit. Data output is a list of lists.
Each sublist contains one path made up of products and processes.
The input Graph may not contain cycles. It may contain multi-output processes.

Args:

		functional_unit: output product

		
edges(mp_list=None)

		Returns an edge list for all edges within the linked meta-process system.

mp_list can be a list of meta-process objects or meta-process names.

		
get_cut_names(mp_list=None)

		Returns cut/input product names for a list of meta-processes.

		
get_output_names(mp_list=None)

		Returns output product names for a list of meta-processes.

		
get_pp_matrix(mp_list=None)

		Returns the product-process matrix as well as two dictionaries
that hold row/col values for each product/process.

mp_list can be used to limit the scope to the contained processes

		
get_process_names(mp_list=None)

		Returns a the names of a list of meta-processes.

		
get_processes(mp_list=None)

		Returns a list of meta-processes.

mp_list can be a list of meta-process objects or meta-process names.

		
get_product_names(mp_list=None)

		Returns the output and input product names of a list of meta-processes.

mp_list can be a list of meta-process objects or meta-process names.

		
lca_alternatives(method, demand)

		Calculation of LCA results for all alternatives in a linked meta-process system that yield a certain demand.
Results are stored in a list of dictionaries as described in ‘lca_linked_processes’.

Args:

		method: LCIA method

		demand (dict): keys: product names, values: amount

		
lca_linked_processes(method, process_names, demand)

		Performs LCA for a given demand from a linked meta-process system.
Works only for square matrices (see scaling_vector_foreground_demand).

Returns a dictionary with the following keys:

		path: involved process names

		demand: product demand

		scaling vector: result of the demand

		LCIA method: method used

		process contribution: contribution of each process

		relative process contribution: relative contribution

		LCIA score: LCA result

Args:

		method: LCIA method

		process_names: selection of processes from the linked meta-process system (that yields a square matrix)

		demand (dict): keys: product names, values: amount

		
lca_processes(method, process_names=None, factorize=False)

		Returns a dictionary where keys = meta-process name, value = LCA score

		
load_from_file(filepath, append=False)

		Loads a meta-process database, makes a MetaProcess object from each meta-process and
adds them to the linked meta-process system.

Args:

		filepath: file path

		append: adds loaded meta-processes to the existing database if True

		
processes

		Returns all process names.

		
product_process_dict(mp_list=None, process_names=None, product_names=None)

		Returns a dictionary that maps meta-processes to produced products (key: product, value: meta-process).
Optional arguments mp_list, process_names, product_names can used as filters.

		
products

		Returns all product names.

		
remove_mp(mp_list)

		Remove meta-processes from the linked meta-process system.

mp_list can be a list of meta-process objects or meta-process names.

		
save_to_file(filepath)

		Saves data for each meta-process in the meta-process data format using pickle and updates the linked meta process system.

		
scaling_vector_foreground_demand(mp_list, demand)

		Returns a scaling dictionary for a given demand and matrix defined by a list of processes (or names).
Keys: process names. Values: scaling vector values.

Args:

		mp_list: meta-process objects or names

		demand (dict): keys: product names, values: amount

		
update(mp_list)

		Updates the linked meta-process system every time processes
are added, modified, or deleted.
Errors are thrown in case of:

		identical names for products and processes

		identical names of different meta-processes

		if the input is not of type MetaProcess()

		
update_name_map()

		Updates the name map, which maps product names (outputs or cuts) to activity keys.
This is used in the Activity Browser to automatically assign a product name to already known activity keys.

		
upstream_products_processes(product)

		Returns all upstream products and processes related to a certain product (functional unit).

 © Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Activity Browser 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

_static/down.png

_images/mp.png
Transport, natural gas car

natural gas, high pressure, at consumer .
O Resaioue input
cut-off
natural gas, production mix, at senvice station
0,08 kiogram
operation, passenger car, natural gas i
e ometer chain
scaling ranspor passenger car natral gas
activity “person klometer

transport
1person kilometer | Output

metaprocess.html

 Navigation

 		
 index

 		
 modules |

 		Activity Browser 0.1.1 documentation »

Class reference

Meta-Process

		
class metaprocess.MetaProcess(name, outputs, chain, cuts, output_based_scaling=True, **kwargs)

		
		A description of one or several processes from a life cycle inventory database.

		It has the following characteristics:

		It produces one or several output products

		It has at least one process from an inventory database

		It has one or several scaling activities that are linked to the output of the system. They are calculated automatically based on the product output (exception: if output_based_scaling=False, see below).

		Inputs may be cut-off. Cut-offs are remembered and can be used in a linked meta-process to recombine meta-processes to form supply chains (or several, alternative supply chains).

		Args:

		
		name (str): Name of the meta-process

		outputs ([(key, str, optional float)]): A list of products produced by the meta-process. Format is (key into inventory database, product name, optional amount of product produced).

		chain ([key]): A list of inventory processes in the supply chain (not necessarily in order).

		cuts ([(parent_key, child_key, str, float)]): A set of linkages in the supply chain that should be cut. These will appear as negative products (i.e. inputs) in the process-product table. The float amount is determined automatically. Format is (input key, output key, product name, amount).

		output_based_scaling (bool): True: scaling activities are scaled by the user defined product outputs. False: the scaling activities are set to 1.0 and the user can define any output. This may not reflect reality or original purpose of the inventory processes.

		
construct_graph(db)

		Construct a list of edges.

		Args:

		
		db (dict): The supply chain database

		Returns:

		A list of (in, out, amount) edges.

		
getFilteredDatabase(depending_databases, chain)

		Extract the supply chain for this process from larger database.

		Args:

		
		nodes (set): The datasets to extract (keys in db dict)

		db (dict): The inventory database, e.g. ecoinvent

		Returns:

		A filtered database, in the same dict format

		
getScalingActivities(chain, edges)

		Which are the scaling activities (at least one)?

Calculate by filtering for processes which are not used as inputs.

		Args:

		
		chain (set): The supply chain processes

		edges (list): The list of supply chain edges

		Returns:

		Boolean isSimple, List heads.

		
get_edge_lists()

		Get lists of external and internal edges with original flow values or scaled to the meta-process.

		
get_product_inputs_and_outputs()

		Returns a list of product inputs and outputs.

		
get_supply_vector(chain, edges, scaling_activities, outputs)

		Construct supply vector (solve linear system) for the supply chain of this simplified product system.

		Args:

		
		chain (list): Nodes in supply chain

		edges (list): List of edges

		scaling_activities (key): Scaling activities

		Returns:

		Mapping from process keys to supply vector indices
Supply vector (as list)

		
lca(method, amount=1.0, factorize=False)

		Calculates LCA results for a given LCIA method and amount. Returns the LCA score.

		
mp_data

		Returns a dictionary of meta-process data as specified in the data format.

		
pad_cuts()

		Makes sure that each cut includes the amount that is cut. This is retrieved from self.internal_scaled_edges_with_cuts.

		
pad_outputs(outputs)

		If not given, adds default values to outputs:

		output name: “Unspecified Output”

		amount: 1.0

		Args:

		
		outputs (list): outputs

		Returns:

		Padded outputs

		
pp

		Property shortcut for returning a list of product intputs and outputs.

		
remove_cuts_from_chain(chain, cuts)

		Remove chain items if they are the parent of a cut. Otherwise this leads to unintended LCIA results.

		
save_as_bw2_dataset(db_name='MP default', unit=None, location=None, categories=[], save_aggregated_inventory=False)

		Save simplified process to a database.

Creates database if necessary; otherwise adds to existing database. Uses the unit and location of self.scaling_activities[0], if not otherwise provided. Assumes that one unit of the scaling activity is being produced.

		Args:

		
		db_name (str): Name of Database

		unit (str, optional): Unit of the simplified process

		location (str, optional): Location of the simplified process

		categories (list, optional): Category/ies of the scaling activity

		save_aggregated_inventory (bool, optional): Saves in output minus input style by default (True), otherwise aggregated inventory of all inventories linked within the meta-process

Linked Meta-Process

		
class linkedmetaprocess.LinkedMetaProcessSystem(mp_list=None)

		A linked meta-process system holds several interlinked meta-processes. It has methods for:

		loading / saving linked meta-process systems

		returning information, e.g. product and process names, the product-process matrix

		determining all alternatives to produce a given functional unit

		calculating LCA results for individual meta-processes

		calculating LCA results for a demand from the linked meta-process system (possibly for all alternatives)

Meta-processes cannot contain:

		2 processes with the same name

		identical names for products and processes (recommendation is to capitalize process names)

Args:

		mp_list ([MetaProcess]): A list of meta-processes

		
add_mp(mp_list, rename=False)

		Adds meta-processes to the linked meta-process system.

mp_list can contain meta-process objects or the original data format used to initialize meta-processes.

		
all_pathways(functional_unit)

		Returns all alternative pathways to produce a given functional unit. Data output is a list of lists.
Each sublist contains one path made up of products and processes.
The input Graph may not contain cycles. It may contain multi-output processes.

Args:

		functional_unit: output product

		
edges(mp_list=None)

		Returns an edge list for all edges within the linked meta-process system.

mp_list can be a list of meta-process objects or meta-process names.

		
get_cut_names(mp_list=None)

		Returns cut/input product names for a list of meta-processes.

		
get_output_names(mp_list=None)

		Returns output product names for a list of meta-processes.

		
get_pp_matrix(mp_list=None)

		Returns the product-process matrix as well as two dictionaries
that hold row/col values for each product/process.

mp_list can be used to limit the scope to the contained processes

		
get_process_names(mp_list=None)

		Returns a the names of a list of meta-processes.

		
get_processes(mp_list=None)

		Returns a list of meta-processes.

mp_list can be a list of meta-process objects or meta-process names.

		
get_product_names(mp_list=None)

		Returns the output and input product names of a list of meta-processes.

mp_list can be a list of meta-process objects or meta-process names.

		
lca_alternatives(method, demand)

		Calculation of LCA results for all alternatives in a linked meta-process system that yield a certain demand.
Results are stored in a list of dictionaries as described in ‘lca_linked_processes’.

Args:

		method: LCIA method

		demand (dict): keys: product names, values: amount

		
lca_linked_processes(method, process_names, demand)

		Performs LCA for a given demand from a linked meta-process system.
Works only for square matrices (see scaling_vector_foreground_demand).

Returns a dictionary with the following keys:

		path: involved process names

		demand: product demand

		scaling vector: result of the demand

		LCIA method: method used

		process contribution: contribution of each process

		relative process contribution: relative contribution

		LCIA score: LCA result

Args:

		method: LCIA method

		process_names: selection of processes from the linked meta-process system (that yields a square matrix)

		demand (dict): keys: product names, values: amount

		
lca_processes(method, process_names=None, factorize=False)

		Returns a dictionary where keys = meta-process name, value = LCA score

		
load_from_file(filepath, append=False)

		Loads a meta-process database, makes a MetaProcess object from each meta-process and
adds them to the linked meta-process system.

Args:

		filepath: file path

		append: adds loaded meta-processes to the existing database if True

		
processes

		Returns all process names.

		
product_process_dict(mp_list=None, process_names=None, product_names=None)

		Returns a dictionary that maps meta-processes to produced products (key: product, value: meta-process).
Optional arguments mp_list, process_names, product_names can used as filters.

		
products

		Returns all product names.

		
remove_mp(mp_list)

		Remove meta-processes from the linked meta-process system.

mp_list can be a list of meta-process objects or meta-process names.

		
save_to_file(filepath)

		Saves data for each meta-process in the meta-process data format using pickle and updates the linked meta process system.

		
scaling_vector_foreground_demand(mp_list, demand)

		Returns a scaling dictionary for a given demand and matrix defined by a list of processes (or names).
Keys: process names. Values: scaling vector values.

Args:

		mp_list: meta-process objects or names

		demand (dict): keys: product names, values: amount

		
update(mp_list)

		Updates the linked meta-process system every time processes
are added, modified, or deleted.
Errors are thrown in case of:

		identical names for products and processes

		identical names of different meta-processes

		if the input is not of type MetaProcess()

		
update_name_map()

		Updates the name map, which maps product names (outputs or cuts) to activity keys.
This is used in the Activity Browser to automatically assign a product name to already known activity keys.

		
upstream_products_processes(product)

		Returns all upstream products and processes related to a certain product (functional unit).

 © Copyright 2015, Bernhard Steubing.
 Created using Sphinx 1.3.1.

_static/file.png

_images/lmp.png
[G prosucton | ara g proucton atemave |

| Etecticty proaucton | | etecttctsprocuction, o | | Transport naturl gas car |

